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ABSTRACT

This paper describes a visualization system which has been used as part of a data-mining e�ort to detect fraud and
abuse within state medicare programs. The data-mining process generates a set of N attributes for each medicare
provider and bene�ciary in the state; these attributes can be numeric, categorical, or derived from the scoring process
of the data-mining routines. The attribute list can be considered as an N -dimensional space, which is subsequently
partitioned into some �xed number of cluster partitions. The sparse nature of the clustered space provides room for
the simultaneous visualization of more than 3 dimensions; examples in the paper will show 6-dimensional visualization.
This ability to view higher dimensional data allows the data-mining researcher to compare the clustering e�ectiveness
of the di�erent attributes. Transparency based rendering is also used in conjunction with �ltering techniques to
provide selective rendering of only those data which are of greatest interest. Nonlinear magni�cation techniques are
used to stretch the N -dimensional space to allow focus on one or more regions of interest while still allowing a view of
the global context. The magni�cation can either be applied globally, or in a constrained fashion to expand individual
clusters within the space.
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1. INTRODUCTION

This paper describes a system for multivariate visualization which has been designed with the particular needs of
data-mining research in mind. The main goal of the system is to allow data-mining experts to better understand
the results of the clustering algorithms which they use to identify \interesting" cases for further investigation. In
this context, \interesting" cases are not simply the outliers, but are also found in the patterns of data, the outliers
within clusters, and other more complex phenomena. The visualization system uses a number of tools to allow the
data-mining researcher to better focus on items of higher interest, and is designed to work on larger problem sizes
of the type that are often encountered in data-mining applications. The paper begins with a brief description of
the fraud-detection application, then describes the basic system for multivariate visualization. After that, nonlinear
magni�cation routines will be introduced for the selective magni�cation of clusters within the data, followed by a
discussion of implementation issues and conclusions.

2. APPLICATION: MEDICARE FRAUD DETECTION

The cluster visualization system described in this paper was developed in 1996 as part of a data-mining project at
Los Alamos National Laboratory, sponsored by the US Federal Health Care Finance Administration, for detecting
fraud among Medicare providers and bene�ciaries. The original data for examination is composed of N attributes
(categoric, numeric or derived from the data-mining scoring process) for each data point (provider record). K-means
analysis is then used to partition the N -dimensional space into 100 clusters, each represented by an N -dimensional
cluster centroid. Each data point has a single cluster centroid associated with it, and each cluster centroid is
associated with a number of data points are contained within the cluster. Associated with each of these centroids
and data points is a probability density function (PDF) estimate which reects the probability with which we would
expect to �nd \normal" items within a given region of the N-dimensional space. For the speci�c examples in this
paper, the dataset is composed of approximately 35; 000 11-dimensional records for medicare providers from a single
state in the southeastern United States.
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3. CLUSTER VISUALIZATION

Many methods have been described for multivariate visualization, such as scatterplots,1 dimensional stacking,2

parallel coordinates3 and virtual worlds.4 In designing a visualization system for this particular application, we
wanted a system which preserved as much of the spatial information from the original N -dimensional data set as
possible. A major reason for wanting to preserve the spatial relationships is that much of the underlying data-mining
process is based on spatial geometries and densities, and by keeping the visualization spatial in nature, we make for
a much smaller cognitive step for the data-mining researcher who is using the visualization system to analyze his
or her data-mining routines. A good discussion of these and other methods (which we sill not repeat here) can be
found in.5 The spatial nature of our system is most similar in avour to virtual worlds,4 although there are many
signi�cant di�erences.

3.1. Frames

As Feiner and Beshers pointed out in,4 our human experiences with spatial positioning are inherently limited to
3D. As a result, while manipulation and visualization of 3D data are fairly natural tasks for us, it requires a large
cognitive leap to extend these tasks to systems of higher dimensionality. Primarily for this reason, we describe our
N -dimensional dataset in terms of 3D frames of the data. For a data set composed of N -dimensional points (each
represented by an N -tuple fx1; x2; : : : ; xng) we can select frames of the data with each frame representing three of
the N possible dimensions. Figure 1 shows one frame (three dimensions) of the eleven dimensions in our dataset.
Each data record is rendered as a discrete point, and each cluster centroid is rendered as a wire-frame cube.

Figure 1. Visualization of 1 Frame (3 Dimensions)

Because of the relative sparsity of the cluster data, it is possible to e�ectively lay out more than three dimensions
of the data in a single 3D coordinate system. Multiple frames can be laid out within the 3D coordinate space of the
visualization, using colour cues to visually separate the dimensions. As an example, one frame could be composed
of the dimensions fx1; x2; x3g and be rendered in green, while another frame could have the dimensions fx5; x4; x8g
and be rendered in blue. Figure 2 shows a snapshot of the program with six dimensions of the data being rendered.
As we will see in Section 3.3, brushing can be used to link data points between frames.

This layout of multiple 3D frames within a single 3D coordinate space is somewhat reminiscent of the virtual
worlds within worlds of,4 however there are signi�cant di�erences. In our system, we do not constrain frames to a
subregion of the encompassing space, instead each frame is scaled to �t fully into the encompassing space. While this



Figure 2. Visualization of 2 Frames (6 Dimensions)

may result in some intermingling of data between the frames, it also has the advantage of allowing for larger-scale
views of the frames, and can increase the information density of the visualization by utilizing the empty spaces
between clusters of data for the layout of other frames.

This method of overlaying frames within a single coordinate space would not necessarily be as e�ective for all
multivariate visualization applications, however it has been noted that N -dimensional space is usually quite sparse,5

so it seems likely that many other multivariate data sets could be amenable to this type of visualization. The
clustering algorithms used in this data-mining process make the data space even more sparse than would normally
be the case. The method used here brings the small multiples of Tufte6 to mind, except that rather than creating a
separate coordinate space for each set of dimensions we use a common space for all frames, thus resulting in large

multiples which have the potential for making more e�ective use of the available space.

The method can be extended further to allow for three or more frames (9D+), however in practice we have
only used it with one or two frames. The reason for this is that a primary goal in the design of this system was
to provide the ability for the data-mining researcher to compare the e�ectiveness of di�erent data-mining models
along di�erent dimensions. This comparison task is well matched to simultaneous visual comparison of two di�erent
frames. If additional frames were added for this task, it might complicate the comparison task unduly. It would be
an interesting area for further research to investigate the usability of this system with di�erent numbers of frames.
It seems possible that since humans tend to hold no more than a handful of objects within short-term memory at
any one time, that immediate comparisons between data points would become more di�cult if the number of frames
becomes too large.

3.2. Transparency

Individual records are rendered as single points, with a transparency that is inversely proportional to the PDF
estimate so that \unusual" records are more clearly visible. Cluster centroids are rendered as wire-frame boxes,
with box size being inversely proportional to the PDF estimate. Nonlinear scaling of the PDF values (similar to
gamma-correction methods), can be used to interactively shift the transparency scale to focus on particular ranges
of PDF values. Explicit clipping of items based on PDF values is also used to selectively render only those items
having a given PDF value or lower. This allows the user to better focus on speci�c items of interest, and also reduces
the size of the data set that must be rendered. Figure 3 shows how PDF clipping can be used on the dataset shown
in Figure2 to reduce the total number of data points being rendered from about 35; 000 to about 2; 000.

3.3. Interaction

Selection of data records can either be done by entering the record ID number, or by selecting one or more data
points by brushing with the mouse. When a record is selected, it is highlighted in all of the visible frames (i.e.



Figure 3. Using PDF Clipping to Isolate Interesting Cases

linked) to show its position relative to the other records in the visible dimensions. Once a record is selected, the
user can highlight the cluster centroid associated with the record, and once a cluster centroid is selected, all of the
data records associated with that cluster can be highlighted. Attribute dimensions can be dynamically assigned to
frame dimensions, and the display smoothly interpolates between the source and target dimension assignments when
this occurs, so that the user does not have to deal with sudden discontinuities. The user can rotate the space freely
about the vertical axis, along with constrained rotation about the horizontal axis, so that views from any angle are
possible without introducing the complexities of unconstrained 3D navigation. The user can also interactively zoom
in on areas of interest, and magni�cation can be applied to any region or regions, as we will see in the next section.

4. NONLINEAR MAGNIFICATION IN 3D

The method for simulating a physical zoom in 3D described in the previous section allows for extreme close-up views
of speci�c regions, but also introduces a number of problems in the process. The major problem with this type of
physical zoom is that it is not possible to see both the details and the overall context; when you are zoomed in on
a region most of the outlying space will not be visible, and when you are able to see the whole space the details are
often too small as to be noticeable. Another characteristic of zoom systems is that it is only possible to focus on
a single region at a time with them, which may present a problem for tasks where comparative visualization would
require focusing on two or more regions simultaneously.

The term nonlinear magni�cation was introduced in7 to describe the e�ects common to all of the many available
approaches for stretching and distorting spaces to produce e�ective visualizations. The basic properties of nonlinear
magni�cation are non-occluding in-place magni�cation which preserves a view of the global context. Most of the
existing nonlinear magni�cation systems to-date have involved the magni�cation of 2D information spaces. Many
of these systems also rely on perspective projections of a mapping of the 2D information space onto a 3D manifold
in order to create the magni�cation e�ect,8,9 and are thus constrained to the magni�cation of 2D spaces only. In
contrast to these perspective-based systems, transformation-based techniques such as the nonlinear transformations
of7 and the hyperbolic spaces of10 allow for simple and direct extension to 3 or more dimensions. This visualization
system uses 3D versions of the transformations described in7 simply by the addition of a z coordinate which is treated
similarly to the x and y coordinates.

Visualization in three dimensions inherently involves occlusion of some portions of the data, however many meth-
ods for dealing with occlusion are available, such as clipping, transparency-based rendering, and creating \tunnels"
through the data in order to see an occluded point of interest.11 Occlusion does not present a great problem for
this particular cluster visualization application however, as the data is composed of dense clusters in a relatively
sparse space, and there is a great deal of empty space available in which to perform the magni�cation. Other likely
candidates for 3D nonlinear magni�cation with similar sparsity properties might involve graph visualization as in.10



The techniques presented in7 describe many di�erent magni�cation e�ects that can be achieved using combinations
of simple and computationally e�cient 2D transformation functions. All of these e�ects have a straightforward
extension to 3D viewing, and we will illustrate a few of them here. Figure 4 shows two examples of unconstrained
magni�cation with a single center of magni�cation. The image on the left uses orthogonal magni�cation (independent
magni�cation along x; y; z axes), and the image on the right uses radial magni�cation (magni�cation along line from
center of magni�cation to the point). We perform the same nonlinear transformation as is performed on the data
points on a regular grid covering the space; the transformed grid is then rendered in a unobtrusive colour and
transparency in order to provide a visual cue to the user as to the overall pattern of magni�cation.

Figure 4. Orthogonal and Radial Unconstrained Magni�cation

As was also the case in,7 there are several di�erent ways in which we can combine multiple centers of magni�cation
(\foci"). The example in Figure 5 shows the e�ect of averaging two unconstrained centers of magni�cation to produce
a more complex magni�cation e�ect.

Figure 5. Combining Multiple Centers of Magni�cation



The previous examples involved the use of unbounded magni�cation that applied across the entire domain. It is
also possible to put exact constraints on the domain that should be magni�ed, so that the magni�cation is localized.
This provides a more static global context, which remains constant as individual portions of the space are magni�ed.
Details for de�ning these constraints are provided in.7,12 Figure 6 shows an example using constrained magni�cation
to expand one set of clusters, while leaving the other clusters in the lower right-hand corner unchanged.

Figure 6. Constrained Magni�cation

We have already seen examples of combining multiple centers of magni�cation with unbound magni�cation. We
can similarly combine multiple constrained foci to allow the user to simultaneously magnify speci�c clusters of data,
as shown in Figure 7.

Figure 7. Constrained Magni�cation with Multiple Centers

There are a number of di�erent ways in which the location of the centers of magni�cation can be manipulated.
The centers can be moved independently along the x; y; z axes using the mouse, or they can be tied to selections of
the data. In the latter option, when the user selects a speci�c cluster centroid, the center of magni�cation moves



via linear interpolation from the current location to the cluster location to provide a smooth animation resulting in
a magni�ed target cluster area. Similar e�ects are possible with the selection of individual data points. Each center
of magni�cation is independent of the others, so it is possible to leave some regions in a �xed state of magni�cation
while exploring other clusters with a roving center of magni�cation.

5. IMPLEMENTATION

This visualization system depends on a high degree of interactivity to be e�ective. Because the data consists of
discrete points, there is not a great deal of coherency inherent in it. Thus we provide simple tools (rotation, zoom,
magni�cation) to allow the user to rapidly animate through a set of views to get a better feel for the nature of the
dataset. It is crucial that these tools work in a smoothly interactive fashion for this to happen.

The nonlinear magni�cation routines used here are based on the FAD Toolkit originally described in.7 Further
information on this toolkit and availability can be found at: /www.cs.indiana.edu/hyplan/tkeahey/research/fad/ .
Similarly to the H3 visualization system,10 this system is designed to work on much larger problem sizes than are
normally addressed by other nonlinear magni�cation-based visualization systems. The prototype system described
here was designed to run at interactive speeds on a relatively slow SGI Indy workstation. For the examples with
two frames of data, this amounts to transforming (magnifying) and rendering 70; 000 3D points at near 10 frames
per second. The toolkit library for producing the transformations is able to transform 3D points at a rate above
1:2 million points transformed per second (on a 250 MHz MIPS R10000), which would allow interactive rates on
data sets of over 120; 000 points. The only nonlinear magni�cation based-system that we have seen which reports
transformation rates within an order of magnitude of this is the H3 system,10 although it is worth noting that the
transformations provided here are of a more general nature and allow multiple interacting foci with constrained or
global domains.

At this stage, the principle bottleneck to using this system with larger data sets lies in the rendering system.
Much of the desktop hardware in use today is not capable of rendering 100; 000 3D points at interactive speeds.
Clipping based on PDF values is one way to reduce the size of the data set which must be rendered. In addition,
the method used for generating transparency in the data points is also an issue. The fastest (and crudest) method
uses polygon stipples to achieve screen-door transparency of the data points. The most expensive (and accurate)
method uses alpha blending to simulate real transparency. Unfortunately the latter option requires back-to-front
rendering of the data points, which implies a need for a full depth sorting of the points before rendering. A pseudo-
transparency method can also be used which uses unsorted alpha-blending to provide some of the bene�ts of true
alpha transparency without the high cost of sorting data points. The choice of which method to use can be switched
at runtime by the user depending on the graphics power of the workstation being used.

6. CONCLUSIONS AND FURTHER WORK

This cluster-visualization application combines several di�erent techniques to enhance visualization for data mining.
The use of frames allows high-dimensional visualization, while the transparency based rendering helps to reduce
visual clutter to focus on the more important items of interest. Nonlinear magni�cation is also employed to enhance
the view of one or more clusters while simultaneously allowing a view of the global context.

There are several potential areas for further research and improvements to the prototype visualizer. One as-
pect that is missing from the current system is a visual representation of the cluster boundaries. Adding such a
representation may help the data-mining researcher better understand the properties of the clustering algorithms.
Implicit magni�cation �elds were introduced in13 as a method for determining the amount of magni�cation that is
implicit in complex transformations of the type described here. By synchronizing rendering functions to this implicit
magni�cation �eld, signi�cant e�ciency gains may become possible if data points below a certain magni�cation level
are aggregated or eliminated from the rendering. This represents a speci�c instance of the generalized detail-in-

context problem described in.14 A method is also described in13 that allows properties of the data to directly de�ne
spatial transformations as a �eld of scalar magni�cation values, these data-driven magni�cations o�er the potential
to automatically provide visual enhancement of the regions which are of greatest interest to the user.
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